Quattrocanali DSP+ Series

4-Channel Fixed Installation Amplifier Platform with DSP and AES67

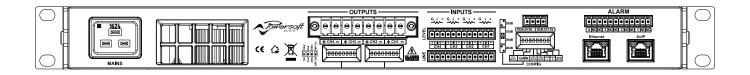
The Quattrocanali Series is specifically designed for installation applications. In just 1 RU, Quattrocanali offers smaller dimensions, lighter weight and the traditionally amazing sound quality and reliability of all Powersoft products.

Quattrocanali Series amplifiers implement a high efficiency microprocessor controlled power supply with built in PFC (Power Factor Correction) that allows flawless worldwide operation with any AC mains voltage in the range 90-264 VAC tolerant to peak up to 400 VAC. The patented SRM (Smart Rails Management) technology allows to maximize the efficiency of the

system and drastically reduce power consumption at any load and usage condition.

A secondary high efficient power supply is present to keep the system responsive at any operating condition, so that system check and monitoring can be performed even in stand-by and deep-sleep modes.

Quattrocanali Series is designed to work with lo-Z (from $2\,\Omega$) and with 70V/100V distributed lines: any mixed configuration of low and high impedance output loads can be realized, making the Quattrocanali Series suitable to applications in installed audio systems.


DSP versions of the Quattrocanali series extends system performance with the support of AES67 digital audio networking architecture and the on board high-end signal processing.

- ► Small to medium-scale venues
- Main systems, central or distributed, subwoofers, hi-Z/lo-Z
- ► Mission critical applications
- ► Shops, stores
- ► Theatres, restaurant, and bars
- ► Houses of worship
- ► Convention centres
- ► Business centres
- ► Cruise ships

Quattrocanali DSP+ Series

4-Channel Fixed Installation Amplifier Platform with DSP and AES67

Specifications

Channel Handling							
Number of output channels 4 Hi-Z or Li (bridgeable per ci			Phoenix PC 5/8-STF1-7 62			7,62	
Number of input channels							
Analog	Analog 4		Pho	Phoenix MC 1,5/12-ST-3,81			
AES67	4		1 x RJ45				
Audio		1204	2404	4804	8804		
Input sensitivity @ 8 Ω with 26 dB Gain			3.54	4.91	5.72	Vrms	
Input sensitivity @ 8 Ω with 29 dB Gain			2.51	3.48	4.06	Vrms	
Input sensitivity @ 8 Ω with 32 dB Gain			1.78	2.46	2.86	Vrms	
Input sensitivity @ 8 Ω with 35 dB Gain			1.26	1.74	2.03	Vrms	
SNR (20 Hz - 20 kHz @ 8 Ω - typical)			108	110	112	dB(A)	
Max input level			20 dBu				
Frequency Response		20 Hz - 20 kHz ±1.0 dB, 1 W @ 8 Ω					
Crosstalk (1 kHz)		typical -70 dB					
Input impedance		20 kΩ balanced					
THD+N (from 0.1 W to Half Power)		< 0.1% (typical < 0.05%)					
SMPTE IMD (from 0.1 W to Half Power)		< 0.1% (typical < 0.05%)					
Slew Rate		> 50 V/ μ s @ 8 Ω , input filter bypassed					
Output impedance at 100 Hz		26 mΩ					

DSP			
AD converters	24 Bit Tandem™ @ 48 kHz typical 125 dB-A Dynamic Range - 0.005 % THD+N		
DA converters	4 Bit Tandem™ @ 48 kHz typical 117 dB-A Dynamic Range - 0.003 % THD+N		
Sample rate converter	24 Bit @ 44.1 kHz to 96 kHz typical 140 dB Dynamic Range - 0.0001 % THD+N		
Internal precision	32 bit floating point		
Latency	2.5 ms fixed latency architecture		
Memory/Presets	49 amplifier snapshots, virtually unlimited speaker presets		
Delay	2 s (input) + 100 ms (output) for time alignment		
Equalizer	Raised-cosine, custom FIR, parametric IIR: peaking, hi/lo-shelving, all-pass, band-pass, band-stop, hi/lo-pass		
Crossover	linear phase (FIR), Butterworth, Linkwitz-Riley, Bessel: 6 dB/oct to 48 dB/oct (IIR)		
Limiters	TruePower™, RMS voltage, RMS current, Peak limiter		
Damping control	Active DampingControl™ and LiveImpedance™ measurement		

Data subject to change without notice.

Output Stage		2404	4804	8804	
per channel @ 8 Ω (symmetrical)*		600	1200	1600	W
per channel @ 4 Ω (symmetrical)*	300	600	1200	2400	W
per channel @ 2 Ω (symmetrical)*		800	1500	1800	W
@ 4 Ω Bridged (symmetrical)*		1600	3000	3600	W
@ 8 Ω Bridged (symmetrical)*		1200	2400	4800	W
@ Hi-Z distributed line 100 V (symmetrical)*		600	1200	2000	W
@ 4Ω Bridged (symmetrical)* @ 8Ω Bridged (symmetrical)* @ 8Ω Bridged (symmetrical)* @ Hi-Z distributed line $100 V$ (symmetrical)* per channel @ 8Ω (asymmetrical)** per channel @ 4Ω (asymmetrical)**		600	1200	2000	W
per channel @ 8 Ω (asymmetrical)**		1300	1300	1800	W
per channel @ 4 Ω (asymmetrical)**		1700	2600	3500	W
per channel @ 2 Ω (asymmetrical)**	1100	1600	1800	1800	W
@ Hi-Z distributed line 100 V (asymmetrical)**		1500	2200	3000	W
@ Hi-Z distributed line 70 V (asymmetrical)**		1700	2100	2100	W
Maximum unclipped output voltage @ 8 Ω		$100\mathrm{V}_{\mathrm{peak}}$	$139\mathrm{V}_{\mathrm{peak}}$	$175~\mathrm{V}_{\mathrm{peak}}$	
kimum output current	33 A _{peak}	45 A _{peak}	45 A _{peak}	55 A _{peak}	
	per channel @ 8 Ω (symmetrical)* per channel @ 4 Ω (symmetrical)* per channel @ 2 Ω (symmetrical)* @ 4 Ω Bridged (symmetrical)* @ 8 Ω Bridged (symmetrical)* @ Hi-Z distributed line 100 V (symmetrical)* per channel @ 8 Ω (asymmetrical)** per channel @ 4 Ω (asymmetrical)** per channel @ 2 Ω (asymmetrical)** @ Hi-Z distributed line 100 V (asymmetrical)** @ Hi-Z distributed line 100 V (asymmetrical)**	per channel @ 8 Ω (symmetrical)* 300 per channel @ 4 Ω (symmetrical)* 300 per channel @ 2 Ω (symmetrical)* 400 @ 4 Ω Bridged (symmetrical)* 800 @ 8 Ω Bridged (symmetrical)* 600 @ Hi-Z distributed line 100 V (symmetrical)* 300 @ Hi-Z distributed line 70 V (symmetrical)* 1100 per channel @ 8 Ω (asymmetrical)** 1100 per channel @ 4 Ω (asymmetrical)** 1100 per channel @ 2 Ω (asymmetrical)** 1100 @ Hi-Z distributed line 100 V (asymmetrical)** 1100 @ Hi-Z distributed line 70 V (asymmetrical)** 1100 immu nuclipped output voltage @ 8 Ω 70 V poak	per channel @ 8 Ω (symmetrical)* 300 600 per channel @ 4 Ω (symmetrical)* 300 600 per channel @ 2 Ω (symmetrical)* 400 800 @ 4 Ω Bridged (symmetrical)* 800 1600 @ 8 Ω Bridged (symmetrical)* 600 1200 @ Hi-Z distributed line 100 V (symmetrical)* 300 600 @ Hi-Z distributed line 70 V (symmetrical)* 300 600 per channel @ 8 Ω (asymmetrical)** 1100 1300 per channel @ 4 Ω (asymmetrical)** 1100 1700 per channel @ 2 Ω (asymmetrical)** 1100 1500 @ Hi-Z distributed line 100 V (asymmetrical)** 1100 1500 @ Hi-Z distributed line 70 V (asymmetrical)** 1100 1700 whise distributed line 70 V (asymmetrical)** 1100 1500	per channel @ 8 Ω (symmetrical)* 300 600 1200 per channel @ 4 Ω (symmetrical)* 300 600 1200 per channel @ 2 Ω (symmetrical)* 400 800 1500 @ 4 Ω Bridged (symmetrical)* 800 1600 3000 @ 8 Ω Bridged (symmetrical)* 600 1200 2400 @ Hi-Z distributed line 100 V (symmetrical)* 300 600 1200 per channel @ 8 Ω (asymmetrical)** 1100 1300 1300 per channel @ 8 Ω (asymmetrical)** 1100 1700 2600 per channel @ 2 Ω (asymmetrical)** 1100 1600 1800 @ Hi-Z distributed line 100 V (asymmetrical)** 1100 1500 2200 @ Hi-Z distributed line 70 V (asymmetrical)** 1100 1500 2200 @ Hi-Z distributed line 70 V (asymmetrical)** 1100 1700 2100 (immu nuclipped output voltage @ 8 Ω 70 V posk 133 V posk (immu nuclipped output voltage @ 8 Ω 33 Δ 45 Δ	per channel @ 8 Ω (symmetrical)* 300 600 1200 1600 per channel @ 4 Ω (symmetrical)* 300 600 1200 2400 per channel @ 2 Ω (symmetrical)* 400 800 1500 1800 @ 4 Ω Bridged (symmetrical)* 800 1600 3000 3600 @ 8 Ω Bridged (symmetrical)* 600 1200 2400 4800 @ Hi-Z distributed line 100 V (symmetrical)* 300 600 1200 2000 @ Hi-Z distributed line 70 V (symmetrical)* 300 600 1200 2000 per channel @ 8 Ω (asymmetrical)** 1100 1300 1300 1800 per channel @ 4 Ω (asymmetrical)** 1100 1700 2600 3500 per channel @ 2 Ω (asymmetrical)** 1100 1500 2200 3000 @ Hi-Z distributed line 100 V (asymmetrical)** 1100 1500 2200 3000 @ Hi-Z distributed line 70 V (asymmetrical)** 1100 1500 2200 3000 @ Hi-Z distributed line 70 V (asymmetrical)** 1100 1700 2100 2100 dimum unclipped output voltage @ 8 Ω 70 V poak 139 V poak 175 V poak (dimum unclipped output voltage @ 8 Ω 33 Δ 45 Δ

^{*:} All channels driven with the same burst power **: Maximum power-sharing capacity per channel

Power & Thermal		1204	2404	4804	8804		
		Power	31.1	31.1	31.3	34	W
_	Idle	Current Draw	0.45	0.45	0.47	0.56	A _{rms}
115 V		Thermal Loss	106	106	107	116	BTU/h
(0)	1/8	Power	227	405	823	1702	W
	Power	Current Draw	2.1	3.7	7.7	15.6	A_{rms}
	@ 4Ω	Thermal Loss	261	360	760	1713	BTU/h
		Power	31.5	31.5	31.6	34	W
_	Idle	Current Draw	0.25	0.25	0.27	0.37	A _{rms}
230 V		Thermal Loss	107	107	108	117	BTU/h
@ 2	1/8	Power	251	405	840	1676	W
	Power	Current Draw	1.4	2.1	4.3	8.2	A_{rms}
	@ 4Ω	Thermal Loss	344	360	818	1624	BTU/h
Power supply		Universal regulated switch mode with PFC, SRM					
Nominal voltage (±10%)		100-240 VAC @ 50-60Hz					
	Operating Voltage		90-264 VAC				
	AC Mains connector		IEC C20 inlet (20 A max)				

Typical use case power consumption is expected to be at least 20% lower (likely more than 50% lower)

Networking	
Standards compliance	auto-sensing Fast Ethernet (IEEE 802.3u, 100 Mbit/s)
Supported topologies	Star
Remote interface	ArmoníaPlus™
Construction	
Dimensions	483 x 44.5 x 358 mm 19.0 x 1.75 x 14.1 in
Weight	7 Kg (15 lb)

